Thursday, May 28, 2009

Plant hormones and growth regulators



Plant hormones and growth regulators are chemicals that affect flowering; aging; root growth; distortion and killing of leaves, stems, and other parts; prevention or promotion of stem elongation; color enhancement of fruit; prevention of leafing and/or leaf fall; and many other conditions. Very small concentrations of these substances produce major growth changes.

Hormones are produced naturally by plants, while plant growth regulators are applied to plants by humans. Plant growth regulators may be synthetic compounds (e.g., IBA and Cycocel) that mimic naturally occurring plant hormones, or they may be natural hormones that were extracted from plant tissue (e.g., IAA).

Applied concentrations of these substances usually are measured in parts per million (ppm) and in some cases parts per billion (ppb). These growth-regulating substances most often are applied as a spray to foliage or as a liquid drench to soil around a plant's base. Generally, their effects are short lived, and they may need to be reapplied in order to achieve the desired effect.

There are five groups of plant-growth-regulating compounds: auxin, gibberellin (GA), cytokinin, ethylene, and abscisic acid (ABA). For the most part, each group contains both naturally occurring hormones and synthetic substances.

Auxin causes several responses in plants:

  • Bending toward a light source (phototropism)
  • Downward root growth in response to gravity (geotropism)
  • Promotion of apical dominance
  • Flower formation
  • Fruit set and growth
  • Formation of adventitious roots

Auxin is the active ingredient in most rooting compounds in which cuttings are dipped during vegetative propagation.
Gibberellins stimulate cell division and elongation, break seed dormancy, and speed germination. The seeds of some species are difficult to germinate; you can soak them in a GA solution to get them started.

Unlike other hormones, cytokinins are found in both plants and animals. They stimulate cell division and often are included in the sterile media used for growing plants from tissue culture. If a medium's mix of growth-regulating compounds is high in cytokinins and low in auxin, the tissue culture explant (small plant part) will produce numerous shoots. On the other hand, if the mix has a high ratio of auxin to cytokinin, the explant will produce more roots. Cytokinins also are used to delay aging and death (senescence).

Ethylene is unique in that it is found only in the gaseous form. It induces ripening, causes leaves to droop (epinasty) and drop (abscission), and promotes senescence. Plants often increase ethylene production in response to stress, and ethylene often is found in high concentrations within cells at the end of a plant's life. The increased ethylene in leaf tissue in the fall is part of the reason leaves fall off trees. Ethylene also is used to ripen fruit (e.g., green bananas).

Abscisic acid (ABA) is a general plant-growth inhibitor. It induces dormancy and prevents seeds from germinating; causes abscission of leaves, fruits, and flowers; and causes stomata to close. High concentrations of ABA in guard cells during periods of drought stress probably play a role in stomatal closure.

Indole-3-butyric acid :

Indole-3-butyric acid (1H-Indole-3-butanoic acid, IBA) is a white to light-yellow crystalline solid, with the molecular formula C12H13NO2. It melts at 125 °C in atmospheric pressure and decomposes before boiling.

As a plant Harmone:
IBA is a plant hormone in the auxin family and is an ingredient in many commercial plant rooting horticultural products.

For use as such, it should be dissolved in about 75% (or purer) alcohol (as IBA does not dissolve in water), until a concentration from between 10,000 ppm to 50,000 ppm is achieved - this solution should then be diluted to the required concentration using distilled water. The solution should be kept in a cool, dark place for best results.
This compound had been thought to be strictly synthetic; however, it was reported that the compounds was isolated from leaves and seeds of maize and other species.
[ To continue ]

Seja o primeiro a comentar

  ©Template Blogger Green by Dicas Blogger.

TOP